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COURSE MATERIALS

• This presentation is part of the virtual SIGGRAPH 2020
– Video is three hours long

– There will be an interactive Q&A session during the conference

• Please visit the course website at
– InteractiveComputerGraphics.com/SIGGRAPH/2020

• Includes latest examples, notes, and source code

• You can run our examples in any recent Web browser
– including many mobile browsers (on iOS and Android)

Join us live!

Tuesday, August 25th 2020
12:00 – 12:30 PM PST
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The emphasis of this course focuses on the capabilities of the WebGL application 
programming interface (i.e., programming library, often called an API).

WHY THIS COURSE?

• Explosion of interest in 3D graphics through a browser
– Write once – deploy anywhere (mostly )

– Application runs locally
– Performance is comparable to native applications

• During our time, we’ll try to these questions
– Which graphics API should I use?

– How do I get started with WebGL?

– What can I do in a WebGL application, and what else might be possible?
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A WORD TO EDUCATORS

• WebGL is a huge asset for teaching Computer Graphics

• Libraries and Application code are the same on every system
– Checking student projects is easy

– Students love to be able to show their work to friends and family on hand-held devices

• OpenGL programs must be recompiled for each architecture
– Libraries must be obtained for each system (Windows, linux, Mac OSX)
– Libraries often change with versions of the OS

– Beginning of semester can be a nightmare for the instructor

• To students, JavaScript is just another language
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We assume that you’re familiar with computer-graphics concepts: vertices, 
geometry, rendering, simple illumination and lighting, and texture mapping.  And 
since we’re developing applications for the Web, we assume you know the 
fundamentals of web browsers and servers, and familiarity with structured 
programming languages like C or C++, Java, or Python.
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WHAT WE ASSUME YOU KNOW

• Basic graphics concepts
– Equivalent to what is presented in SIGGRAPH’s graphics fundamentals course

• Programming in a high-level language
– WebGL is effectively a JavaScript library

– Knowing some Java, C, or C++ is sufficient for this course

• Internet familiarity
– Basic HTML

– Webpage components
• head, body, scripts
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WebGL is a JavaScript (JS) implementation of ES 2.0, and runs within the 
browser, so it is independent of the operating and window systems.  Additionally, 
the signatures of the functions (i.e., the list of parameters) are identical in all but a 
few cases, so learning WebGL gives the added benefit of knowing a lot about 
programming OpenGL and OpenGL ES as well.  Further, because WebGL uses 
the HTML canvas element, it does not require system-dependent libraries for 
opening windows and interaction.

WebGL 2.0 is a JavaScript implementation of ES 3.0.

WHAT ARE GRAPHICS APIS, WEBGL, AND WHY LEARN 
THEM?

• A (Computer) Graphics API is a programming library for 
drawing graphics and other operations
– API is short to Application Programming Interface

• WebGL is part of the OpenGL family of APIs

• WebGL implements OpenGL ES in JavaScript
– runs in all recent browsers (Chrome, Firefox, Edge, Safari)

• entire application is operating-system independent

• entire application is window-system independent 

– application can be located on a remote server 

– rendering is done within browser using local hardware
– integrates with standard Web packages and apps

API Name 
(Latest Version)

Device 
Environment

OpenGL (4.5) Personal Computers

OpenGL ES (3.2) Embedded devices

WebGL (2.0) Web Browsers



The development of APIs for 3D computer graphics is exemplified by the development of 
the OpenGL family of APIs. The original version contained many functions (commonly 
called the fixed-function pipeline) for manipulating and rendering three-dimensional 
geometry, which while simple to use, limited flexibility. As GPUs became programmable, 
APIs supported programmable shaders. Consequently, the fixed-function pipeline was 
replaced with a shader-based pipeline where applications are expected to provide the 
shaders for rendering. Under both these paradigms, the graphics libraries were 
accessed via code compiled for and executing on the CPU (in programming languages 
like C/C++, Java, and Python, to name a few).  As such, applications needed to be 
recompiled for each CPU architecture

With the advent of the World Wide Web, the focus of interactive-graphics applications 
switched to HTML, primarily through the HTML5 Canvas element. Such applications 
could be distributed from a remote server to a web browser running on a machine and 
make use of local hardware, especially the GPU. WebGL is a JavaScript implementation 
of OpenGL ES that can be used with HTML5 and thus any recent browser. Because 
WebGL uses the local hardware, its performance is close to that of desktop OpenGL.

Both desktop OpenGL and WebGL require the application to provide shaders, and to do 
so requires knowledge of their shading language — GLSL — and how to create and 
manipulate various buffer and many other tasks which may not be of interest to 
application programmer.  Scene graphs avoid many of these issue by providing a higher-
level API which calls into a system’s OpenGL/WebGL implementation. For web 
applications, three.js is the dominant API for three-dimensional, interactive graphics 
applications. A basic application needs only to describe  a scene using objects, cameras, 
and attributes (e.g., colors, textures, materials) that are part of the API.

7

AGENDA

• WebGL Architecture
– Evolution of Graphics Architectures

– The OpenGL family of APIs
– Working within a browser

• Introduction to WebGL

• Analysis of a Complete Example
– Modeling geometry

– Shader overview
– Transformations

– Lighting

– Texture Mapping

• Real-world Examples and Advanced 
Techniques

• Things to explore
– Advances in graphics APIs and Web 

technologies
– Topics for self study

• Resources & Q&A



In this section, we’ll describe the architecture of WebGL, describing its pipeline, 
and highlighting the important parts for WebGL applications.
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WEBGL ARCHITECTURE



The initial version of OpenGL implemented a fixed-function pipeline, in which all the 
operations that OpenGL supported were fully-defined, and an application could only 
modify their operation by changing a set of input values (like colors or positions) through 
function calls.  The other point of a fixed-function pipeline is that the order of operations 
was always the same – that is, you can’t reorder the sequence operations occur. 

If you’re developing a new application, we strongly recommend using the techniques that 
we’ll discuss.  Those techniques can be more flexible, and will likely perform better than 
using one of these early versions of OpenGL since they can take advantage of the 
capabilities of recent Graphics Processing Units (GPUs).

To allow applications to gain access to these new GPU features, OpenGL version 2.0 
officially added programmable shaders into the graphics pipeline.  This version of the 
pipeline allowed an application to create small programs, called shaders, that were 
responsible for implementing the features required by the application.  In the 2.0 version 
of the pipeline, two programmable stages were made available:

 vertex shading enabled the application full control over manipulation of the 3D 
geometry provided by the application

• fragment shading provided the application capabilities for shading pixels (the terms 
classically used for determining a pixel’s color).

Until OpenGL 3.0, features have only been added (but never removed) from OpenGL, 
providing a lot of application backwards compatibility (up to the use of extensions).  
OpenGL version 3.0 introduced the mechanisms for removing features from OpenGL, 
called the deprecation model. 
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EVOLUTION OF THE OPENGL PIPELINE

• OpenGL 1.0 (1992) had fixed, limited functionality

• OpenGL 2.0 (2004) added programmable shaders
– vertex shading augmented the fixed-function transform and lighting stage

– fragment shading augmented the fragment coloring stage

• OpenGL 3.1 (2008) deprecated the fixed-function interface and required shaders
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Once our JS and HTML code is interpreted and executes with a basic OpenGL pipeline. 
Generally speaking, data flows from your application through the GPU to generate an 
image in the frame buffer.  Your application will provide vertices, which are collections of 
data that are composed to form geometric objects, to the OpenGL pipeline.  The vertex 
processing stage uses a vertex shader to process each vertex, doing any computations 
necessary to determine where in the frame buffer each piece of geometry should go.  

After all the vertices for a piece of geometry are processed, the rasterizer determines 
which pixels in the frame buffer are affected by the geometry, and for each pixel, the 
fragment processing stage is employed, where the fragment shader runs to determine 
the final color of the pixel.

In your OpenGL/WebGL applications, you’ll usually need to do the following tasks:

• specify the vertices for your geometry

• load vertex and fragment shaders (and other shaders, if you’re using them as well)

• issue your geometry to engage the pipeline for processing

Of course, OpenGL and WebGL are capable of many other operations as well, many of 
which are outside of the scope of this introductory course.  We have included references 
at the end of the notes for your further research and development.
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WebGL is becoming increasingly more important because it is supported by all 
browsers. Besides the advantage of being able to run without recompilation 
across platforms, it can easily be integrated with other Web applications and 
make use of a variety of portable packages available over the Web.

On Windows systems, Chrome and Firefox use an intermediate layer called 
ANGLE, which takes OpenGL calls and turns them into DirectX calls. This is 
done because the DirectX drivers are generally more efficient for Windows, since 
they've undergone more development. Command-line options can disable the 
use of ANGLE.
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OPENGL ES AND WEBGL

• OpenGL ES 2.0 and ES 3.0
– Designed for embedded and hand-held devices such as cell phones

– OpenGL ES 2.0 is based on OpenGL 2.0 but requires shaders
• no fixed-function features are available

• WebGL 
– WebGL 1.0: JavaScript implementation of ES 2.0

• Supported in all recent browsers

– WebGL 2.0: JavaScript implementation of ES 3.0
• Starting to be supported in recent releases of browsers



Although OpenGL source code for rendering should be the same across multiple 
platforms, the code must be recompiled for each architecture, In addition, the 
non-rendering parts of an application such as opening windows and input 
processing are not part of OpenGL and can be vary significantly on different 
systems.

Almost all OpenGL applications are designed to run locally on the computer on 
which they live. 

12

EXECUTION IN A BROWSER

• Fundamentally different from running an OpenGL program locally

• OpenGL execution
– Compiled executable for each architecture

– application controls display and manages window creation

– application runs on local machine using its resources
• CPU

• Memory

• GPU

• WebGL code
– Independent of machine architecture 

– Runs in a web browser on local computer

– Can be served from a web browser or use files on local machine



A typical WebGL application consists of a mixture of HTML5, JavaScript and 
GLSL (shader) code. The application can be located almost anywhere and is 
accessed through its URL . All browsers can run JavaScript and all modern 
browsers support HTML. The rendering part of the application is in JavaScript 
and  renders into the HTML5 Canvas element. Thus, the WebGL code is 
obtained from a server (either locally or remote) and is compiled by the browser’s 
JavaScript engine into code that run on the local CPU and GPU.
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BROWSER EXECUTION
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WHY USE WEBGL DIRECTLY?

• Three.js and other libraries (e.g., babylon.js, OSG.JS) are handy 

• However:
– They need to be downloaded. Just three.min.js is ~500kB.

– They may not do just what you want and may have bugs.

– Some ways they have of storing data are inefficient.
– You may already have OpenGL code to port.

– Teaching WebGL crosses over to OpenGL, and DirectX.

– There are many more resources for OpenGL programming.
– Knowing WebGL makes it easier to learn and use three.js

Clearly, there are advantages to using a toolkit like three.js, so why work directly 
in WebGL?  Most of those libraries increase the download size of the web 
application, which can impact both application load times, as well as their ability 
to run on mobile devices.  Further, toolkits prescribe the order of operations and 
facilitates. WebGL allows the application programmer complete control over the 
operation of the graphics pipeline from the application.  Of course, that level of 
control comes at the cost of needing to know considerably more about the 
operation of computer graphics, and how to implement those algorithms.

That said, knowing how WebGL operates can make you more efficient and 
informed when using a higher-level toolkit.
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You’ll find that a few techniques for programming with modern WebGL goes a 
long way.  In fact, most programs – in terms of WebGL activity – are very 
repetitive.  Differences usually occur in how objects are rendered, and that’s 
mostly handled in your shaders.

There four steps you’ll use for rendering a geometric object are as follows:

First, you’ll load and create WebGL shader programs from shader source 
programs you create

Next, you will need to load the data for your objects into WebGL’s memory.  
You do this by creating buffer objects and loading data into them.

Continuing, WebGL needs to be told how to interpret the data in your buffer 
objects and associate that data with variables that you’ll use in your shaders.  
We call this shader plumbing.

Finally, with your data initialized and shaders set up, you’ll render your objects
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WEBGL IN A NUTSHELL

• All WebGL programs must do the following:
1. Set up canvas to render onto

2. Generate data in application
3. Create shader programs

4. Create buffer objects and load data into them

5. “Connect” data locations with shader variables
6. Render



HTML (hypertext markup language) is the standard for describing Web pages.  A 
page consists of a several elements which are described by tags, HTML5 
introduced the canvas element which provides a window that WebGL can render 
into. Note other applications can also render into the canvas or on the same 
page. 

Generally, we use HTML to set up the canvas, bring in the necessary files and 
set up other page elements such as buttons and sliders. We can embed our 
JavaScript WebGL code in the same file or have the HTML file load the 
JavaScript from a file or URL. Likewise with the shaders. 
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APPLICATION FRAMEWORK

• WebGL applications need a place to render into
– HTML5 Canvas element

• We can put all code into a single HTML file

• We prefer to put setup in an HTML file and the application in a separate JavaScript file
– HTML file includes shaders

– HTML file reads in utilities and application



The cube is one of computer graphics’ fundamental primitives.  It’s a built-in 
object to three.js, but for WebGL, we’d need to specify the cube using the 
primitives available for WebGL, most notably triangles.  To shade our cube in 
WebGL, we’ll need to understand concepts like lighting, textures and texture 
mapping, and perhaps blending.  These concepts are also available in three.js, 
and require much less work to apply them to a geometric object.  Similarly, 
interacting with the geometric objects in three.js is quite simple.  By contrast, 
WebGL doesn’t have any facilities for interaction; the application programmer 
needs to receive and interpret the user’s interaction with the application, and 
convert those into operations affecting how WebGL manipulates its geometric 
objects.

At this point, you may be asking yourself “Why would anyone want to code 
directly in WebGL?”.  Low-level interfaces like WebGL provide the ultimate 
flexibility to an application, and used appropriately, may provide superior 
performance.  Additionally, three.js prescribes how and the order that operations 
are done.  If your application needs to do something outside of those capabilities, 
you may need to modify three.js’s operation, which can be done using WebGL.

OUR APPROACH

• Demonstration using a Cube
– Geometry

– Interaction
– Lighting

– Texture Mapping
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WEBGL CUBE (PART 1)
MODELING GEOMETRY
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In OpenGL, as in other graphics libraries, objects in the scene are composed of 
geometric primitives, which themselves are described by vertices.  A vertex in 
modern OpenGL is a collection of data values associated with a location in 
space.  Those data values might include colors, reflection information for lighting, 
or additional coordinates for use in texture mapping. Locations can be specified 
on 2, 3 or 4 dimensions but are stored in 4 dimensional homogeneous 
coordinates.

The homogenous coordinate representation of a point has w = 1 and for a vector 
w = 0. Perspective cameras can change the value of w. We return to normal 3D 
coordinates by perspective division which replaces p = [x, y, z, w] by p’= [x/w, y/w, 
z/w].

Vertices must be organized in OpenGL server-side objects called vertex buffer 
objects (also known as VBOs), which need to contain all of the vertex information 
for all the primitives that you want to draw at one time.  
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REPRESENTING GEOMETRIC OBJECTS

• Geometric objects are represented using vertices

• A vertex is a collection of generic attributes
– positional coordinates

– colors

– texture coordinates
– any other data associated with that point in space

• Position stored in 4-dimensional homogeneous coordinates

• Vertex data must be stored in vertex buffer objects (VBOs)

𝑝 ൌ

𝑥
𝑦
𝑧
𝑤



To form 3D geometric objects, you need to decompose them into geometric 
primitives that WebGL can draw.  WebGL (and modern desktop OpenGL) only 
knows how to draw three things: points, lines, and triangles, but can use 
collections of the same type of primitive to optimize rendering.

WEBGL GEOMETRIC PRIMITIVES

• All primitives are specified by vertices

gl.TRIANGLE_FAN

gl.LINES gl.LINE_LOOPgl.LINE_STRIP

gl.TRIANGLES

gl.POINTS

gl.TRIANGLE_STRIP
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The next few slides will introduce our example program, one which simply 
displays a cube with different colors at each vertex.  We aim for simplicity in this 
example, focusing on the WebGL techniques, and not on optimal performance. 
This example is animated with rotation about the three coordinate axes and 
interactive buttons that  allow the user to change the axis of rotation and start or 
stop the rotation.
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CUBE PROGRAM

• Render a cube with a different color for each face

• Our example demonstrates:
– simple object modeling

• build 3D objects from geometric primitives

• specify geometric primitives with vertices

– initializing vertex data
– organizing data for rendering

– interactivity

– Animation

• Code online at the course website
– www.interactivecomputergraphics.com/SIGGRAPH/2020



To simplify our application development, we define a few types and constants to 
make our code more readable and organized.

Our cube, like any other cube, has six square faces, each of which we’ll draw as 
two triangles.  In order to size memory arrays to hold the necessary vertex data, 
we define the constant numVertices.

As we shall see, GLSL has vec2, vec3 and vec4 types. All are stored as four 
element arrays: [x, y, z, w]. The default for vec2’s is to set z = 0 and w =1. For 
vec3’s the default is to set w = 1.

MV.js also contains many matrix and viewing functions. The package is available 
on the course website or at www.cs.unm.edu/~angel/WebGL. MV.js is not 
necessary for writing WebGL applications but its functions simplify development 
of 3D applications.
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INITIALIZING THE CUBE’S DATA

• We’ll build each cube face from individual triangles

• Need to determine how much storage is required
– (6 faces)(2 triangles/face)(3 vertices/triangle)

var numVertices = 36;

• To simplify communicating with GLSL, we’ll use a package MV.js that contains a vec3 object like GLSL’s 
vec3 type



To provide data for WebGL to use, we need to stage it so that we can load it into 
the VBOs that our application will use.  In your applications, you might load these 
data from a file, or generate them on the fly.  For each vertex, we want to use two 
bits of data – vertex attributes in OpenGL speak – to help process each vertex to 
draw the cube.  In our case, each vertex has a position in space, and an 
associated color.  To store those values for later use in our VBOs, we create two 
arrays to hold the per vertex data. Note that we can organize our data in other 
ways such as with a single array with interleaved positions and colors.

We note  that JavaSript arrays are objects and are not equivalent to simple 
C/C++/Java arrays. JS arrays are objects with attributes and methods.
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INITIALIZING THE CUBE’S DATA (CONT’D)

• Before we can initialize our VBO, we need to stage the data

• Our cube has two attributes per vertex
– position

– color

• We create two (empty) arrays to hold the VBO data

var points = [ ];

var colors = [ ];



In our example we’ll copy the coordinates of our cube model into a VBO for 
WebGLto use.  Here we set up an array of eight coordinates for the corners of a 
unit cube centered at the origin.

You may be asking yourself: “Why do we have four coordinates for 3D data?”  
The answer is that in computer graphics, it’s often useful to include a fourth 
coordinate to represent three-dimensional coordinates, as it allows numerous 
mathematical techniques that are common operations in graphics to be done in 
the same way.  In fact, this four-dimensional coordinate has a proper name, a 
homogenous coordinate. We could also use a vec3 type, i.e.

vec3(-0.5, -0.5, 0.5) 

which will be stored in 4 dimensions on the GPU.

In this example, we will again use the default camera so our vertices all fit within 
the default view volume.
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CUBE DATA

• Vertices of a unit cube centered at origin
– sides aligned with axes

var vertices = [

vec4( ‐0.5, ‐0.5,  0.5, 1.0 ),

vec4( ‐0.5,  0.5,  0.5, 1.0 ),

vec4(  0.5,  0.5,  0.5, 1.0 ),

vec4(  0.5, ‐0.5,  0.5, 1.0 ),

vec4( ‐0.5, ‐0.5, ‐0.5, 1.0 ),

vec4( ‐0.5,  0.5, ‐0.5, 1.0 ),

vec4(  0.5,  0.5, ‐0.5, 1.0 ),

vec4(  0.5, ‐0.5, ‐0.5, 1.0 )

];

1

7

4

6

7
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Just like our positional data, we’ll set up a matching set of colors for each of the 
model’s vertices, which we’ll later copy into our VBO.  Here we set up eight 
RGBA colors.  In WebGL, colors are processed in the pipeline as floating-point 
values in the range [0.0, 1.0].  Your input data can take any for; for example, 
image data from a digital photograph usually has values between [0, 255].  
WebGL will (if you request it), automatically convert those values into [0.0, 1.0], a 
process called normalizing values.
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CUBE DATA (CONT’D)

• We’ll also set up an array of RGBA colors

• We can use vec3 or vec4 or just a JS array

var vertexColors = [

[ 0.0, 0.0, 0.0, 1.0 ],  // black

[ 1.0, 0.0, 0.0, 1.0 ],  // red

[ 1.0, 1.0, 0.0, 1.0 ],  // yellow

[ 0.0, 1.0, 0.0, 1.0 ],  // green

[ 0.0, 0.0, 1.0, 1.0 ],  // blue

[ 1.0, 0.0, 1.0, 1.0 ],  // magenta

[ 0.0, 1.0, 1.0, 1.0 ],  // cyan

[ 1.0, 1.0, 1.0, 1.0 ]   // white

];



flatten() is in MV.js.

Alternately, we could use typed arrays as we did for the triangle example and 
avoid the use of flatten for one-dimensional arrays. However. we will still need to 
convert matrices from two-dimensional to one-dimensional arrays to send them to 
the shaders. In addition, there are potential efficiency differences between using 
JS arrays vs typed arrays. It’s a very small change to use typed Arrays in MV.js. 
See the website. 
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ARRAYS IN JS

• A JS array is an object with attributes and methods such as length, push() and  pop()
– fundamentally different from C-style array

– cannot send directly to WebGL functions

– use flatten() function to extract data from JS array

gl.bufferData( gl.ARRAY_BUFFER, flatten(colors), gl.STATIC_DRAW );



As our cube is constructed from square cube faces, we create a small function, 
quad(), which takes the indices into the original vertex color and position arrays, 
and copies the data into the VBO staging arrays.  If you were to use this method 
(and we’ll see better ways in a moment), you would need to remember to reset 
the Index value between setting up your VBO arrays.

Note the use of the array method push() so we do not have to use indices for the 
point and color array elements
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GENERATING A CUBE FACE FROM VERTICES

• To simplify generating the geometry, we use a convenience function quad() which create two triangles for 
each face and assigns colors to the vertices

function quad(a, b, c, d) {

var indices = [ a, b, c, a, c, d ];

for ( var i = 0; i < indices.length; ++i ) {

points.push( vertices[indices[i]] );

// for vertex colors use

// colors.push( vertexColors[indices[i]] );

// for solid colored faces use 

colors.push(vertexColors[a]);

}



INTERPOLATING COLORS

• Vertices are sent through the rasterizer which generates fragments 
– For a points the default for the rasterizer is to produce a single fragment

– For a line, the rasterizer, produces fragments whose positions interpolate between pairs of vertex positions
– For  a triangle, the rasterizer interpolates the three vertex positions to generate interior fragments

• For vertex attributes, such as colors, the rasterizer interpolates from their vertex values
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Here we complete the generation of our cube’s VBO data by specifying the six 
faces using index values into our original positions and colors arrays.  It’s worth 
noting that the order that we choose our vertex indices is important, as it will 
affect something called backface culling later.

We’ll see later that instead of creating the cube by copying lots of data, we can 
use our original vertex data along with just the indices we passed into quad()
here to accomplish the same effect.  That technique is very common, and 
something you’ll use a lot.  We chose this to introduce the technique in this 
manner to simplify the OpenGL concepts for loading VBO data.
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GENERATING THE CUBE FROM FACES

• Generate 12 triangles for the cube
– 36 vertices with 36 colors

function colorCube() {

quad( 1, 0, 3, 2 );

quad( 2, 3, 7, 6 );

quad( 3, 0, 4, 7 );

quad( 6, 5, 1, 2 );

quad( 4, 5, 6, 7 );

quad( 5, 4, 0, 1 );

}
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While we’ve talked a lot about VBOs, we haven’t detailed how one goes about 
creating them.  Vertex buffer objects, like all (memory) objects in WebGL (as 
compared to geometric objects) are created in the same way, using the same set 
of functions.  In fact, you’ll see that the pattern of calls we make here are like 
other sequences of calls for doing other WebGL operations.
In the case of vertex buffer objects, you’ll do the following sequence of function 
calls:

Generate a buffer’s by calling gl.createBuffer().

Next, you’ll make that buffer the “current” buffer, which means it’s the selected 
buffer for reading or writing data values by calling gl.bindBuffer(), with a type 
of GL_ARRAY_BUFFER.  There are different types of buffer objects, with an 
array buffer being the one used for storing geometric data.

To initialize a buffer, you’ll call gl.bufferData(), which will copy data from your 
application into the GPU’s memory.  You would do the same operation if you 
also wanted to update data in the buffer.

Finally, when it comes time to render using the data in the buffer, you’ll once 
again call gl.bindVertexArray() to make it and its VBOs current again.  

We can replace part of the data in a buffer with gl.bufferSubData()
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STORING VERTEX ATTRIBUTES

• Vertex data must be stored in a Vertex Buffer Object (VBO)

• To set up a VBO we must
– create an empty by calling gl.createBuffer();

– bind a specific VBO for initialization by calling

gl.bindBuffer( gl.ARRAY_BUFFER, vBuffer );

– load data into VBO using (for our points)

gl.bufferData( gl.ARRAY_BUFFER, flatten(points), gl.STATIC_DRAW );



To complete the “plumbing” of associating our vertex data with variables in our 
shader programs, you need to tell WebGL where in our buffer object to find the 
vertex data, and which shader variable to pass the data to when we draw. The 
above code snippet shows that process for our two data sources.  In our shaders 
(which we’ll discuss in a moment), we have two variables: vPosition, and vColor, 
which we will associate with the data values in our VBOs that we copied form our 
vertex positions and colors arrays.

The calls to gl.getAttribLocation() will return a compiler-generated index which we 
need to use to complete the connection from our data to the shader inputs.  We 
also need to “turn the valve” on our data by enabling its attribute array by calling 
gl.enableVertexAttribArray() with the selected attribute location.

Here we use the flatten function to extract the data from the JS arrays and put 
them into the simple form expected by the WebGL functions,  basically one 
dimensional C-style arrays of floats.
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VERTEX ARRAY CODE

• Associate shader variables with vertex arrays

var cBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, cBuffer );
gl.bufferData( gl.ARRAY_BUFFER, flatten(colors), gl.STATIC_DRAW );

var vColor = gl.getAttribLocation( program, ”vColor" );
gl.vertexAttribPointer( vColor, 4, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( vColor );

var vBuffer = gl.createBuffer(); 
gl.bindBuffer( gl.ARRAY_BUFFER, vBuffer );
gl.bufferData( gl.ARRAY_BUFFER, flatten(points), gl.STATIC_DRAW ); 

var vPosition = gl.getAttribLocation( program, ”vPosition" ); 
gl.vertexAttribPointer( vPosition, 3, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( vPosition );
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To initiate rendering in your application, you need to issue a drawing routine.   
The render() function shown above contains the essence of what needs to be 
done each frame to render with WebGL.

First, we clear where we want to render by calling gl.clear().  In the case shown 
above, we clear two buffers: the color buffer, where our generated image will 
appear; and the depth buffer, used for hidden surface removal.  In order to 
remove hidden surfaces, you need to ask WebGL to enable depth testing, using 
the call gl.enable(gl.DEPTH_TEST), which we would have specified in our init() 
routine (assuming we wanted it enabled for the entirety of the application).

While there are many routines for rendering in WebGL, we’ll discuss the most 
fundamental ones.  The simplest routine is gl.drawArrays(), specifies the type of 
graphics primitive you want to draw (e.g., here we’re rending triangles); the vertex 
in the enabled vertex attribute arrays to start with; and how many vertices to 
send. If we use triangle strips or triangle fans, we only need to store four vertices 
for each face of the cube rather than six.

This is the simplest way of rendering geometry in WebGL.  You merely need to 
store your vertex data in sequence, and then gl.drawArrays() takes care of the 
rest.  However, in some cases, this won’t be the most memory efficient method of 
doing things.  Many geometric objects share vertices between geometric 
primitives, and with this method, you need to replicate the data once for each 

DRAWING GEOMETRIC PRIMITIVES

• For contiguous groups of vertices, we can use the simple render function

function render()

{

gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

gl.drawArrays( gl.TRIANGLES, 0, numVertices );

requestAnimationFrame( render );

}

• gl.drawArrays() initiates vertex shader

• requestAnimationFrame() needed for redrawing if anything is changing



vertex.  
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WEBGL CUBE (PART 2)
SHADERS



The vertex shader the stage between the application and the raster. It operates in 
four dimensions and is used primarily for geometric operations such as changes 
in representations from the object space to the camera space and lighting 
computations. A vertex shader must output a position in clip coordinates or 
discard the vertex. It can also output other attributes such as colors and texture 
coordinates to the rasterizer. 
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VERTEX SHADERS

• A shader that’s executed for each vertex
– Each execution can generate one vertex 

– Outputs are passed on to the rasterizer where they are interpolated and used to spawn fragment shader executions
– Vertex’s output position is in clip coordinates

• There are lots of effects we can do in vertex shaders
– Changing coordinate systems

– Moving vertices

– Per-vertex lighting
– Height fields



The final shading stage that OpenGL supports is fragment shading which allows 
an application per-pixel-location control over the color that may be written to that 
location.  Fragments, which are on their way to the framebuffer, but still need to 
do some pass some additional processing to become pixels.  However, the 
computational power available in shading fragments is a great asset to 
generating images.  In a fragment shader, you can compute lighting values –
similar to what we just discussed in vertex shading – per fragment, which gives 
much better results, or add bump mapping, which provides the illusion of greater 
surface detail.  Likewise, we’ll apply texture maps, which allow us to increase the 
detail for our models without increasing the geometric complexity.
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FRAGMENT SHADERS

• A shader that’s executed for each “potential” pixel
– fragments still need to pass several tests before making it to the framebuffer

• There are many effects we can implement in fragment shaders
– Per-fragment lighting
– Texture and bump mapping

– Environment (reflection) maps



Generally, GLSL code  is compiled by WebGL as opposed to the HML and JS 
code which is interpreted. After successful compilation the shaders are put into a 
program object which is linked with the application code. WebGL allows for 
multiple program objects and thus multiple shaders within an application.

GLSL

• OpenGL Shading Language

• C-like language with some C++ features

• 2- to 4-dimensional matrix and vector types

• Both vertex and fragment shaders are written in GLSL

• Each shader has a main() entry point
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As with any programming language, GLSL has types for variables.  However, it 
includes vector-, and matrix-based types to simplify the operations that occur 
often in computer graphics.

In addition to numerical types, other types like texture samplers are used to 
enable texture operations.  We’ll discuss texture samplers in the texture mapping 
section.

GLSL DATA TYPES

• C++ Style Constructors 
vec3 a = vec3(1.0, 2.0, 3.0);

Data Type WebGL GLSL Type

Scalars float, int, bool

Vectors vec2, vec3, vec4
ivec2, ivec3, ivec4
bvec2, bvec3, bvec4

Matrices mat2, mat3, mat4

Texture Samplers sampler2D
sampler3D (WebGL 2.0)
samplerCube



The vector and matrix classes of GLSL are first-class types, with arithmetic and 
logical operations well defined.  This helps simplify your code, and prevent errors.

Note in the above example, overloading ensures that both a*m and m*a are 
defined although they will not in general produce the same result.
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GLSL OPERATORS

• Standard C/C++ arithmetic and logic operators

• Overloaded operators for matrix and vector operations

mat4 m;

vec4 a, b, c;

b = a*m;

c = m*a;



In addition to types, GLSL has numerous qualifiers to describe a variable usage.  
The most common of those are:

attribute qualifiers indicate the shader variable will receive data flowing into 
the shader, either from the application,

varying qualifier which tag a variable as data output where data will flow to the 
next shader stage,

uniform qualifiers for accessing data that doesn’t change across a draw 
operation

Recent versions of GLSL replace attribute and varying qualifiers by in and out 
qualifiers
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QUALIFIERS

• in (attribute)
– vertex attributes from application

• in/out (varying)
– values are sent from vertex shader to rasterizer

• out vec2 texCoord;

• out vec4 color;

– fragment shader receives interpolated values

• in vec2 texCoord;

• in vec4 color;

• uniform

– shader-constant variable from application
uniform float time;

• uniform vec4 rotation;



GLSL also provides a rich library of functions supporting common operations.  
While pretty much every vector- and matrix-related function available you can 
think of, along with the most common mathematical functions are built into GLSL, 
there’s no support for operations like reading files or printing values.  Shaders are 
data-flow engines with data coming in, being processed, and sent on for further 
processing.  
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FUNCTIONS

• Built in
– Arithmetic: sqrt, power, abs

– Trigonometric: sin, asin

– Graphical: length, reflect

• Support for user-defined functions 



Fundamental to shader processing are a couple of built-in GLSL variable which 
are the terminus for operations.  Vertex data, which can be processed by up to 
four shader stages in desktop OpenGL, are all ended by setting a positional value 
into the built-in variable, gl_Position.  

Additionally, fragment shaders provide several of built-in variables.  For example, 
gl_FragCoord is a read-only variable, while gl_FragDepth is a read-write variable.  
Recent versions of OpenGL allow fragment shaders to output to other variables 
of the user’s designation as well.
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BUILT-IN VARIABLES

• gl_Position
– (required) output position from vertex shader

• gl_FragColor
– (required) output color from fragment shader in WebGL 1.0
– not used in WebGL 2.0

• Replaced by a user-defined out variable

• gl_FragCoord
– input fragment position

• gl_FragDepth
– input depth value in fragment shader
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Here’s the simple vertex shader we use in our cube rendering example.  It 
accepts two vertex attributes as input: the vertex’s position and color, and does 
very little processing on them; in fact, it merely copies the input into some output 
variables (with gl_Position being implicitly declared).  The results of each vertex 
shader execution are passed further down the pipeline, and ultimately end their 
processing in the fragment shader.

SIMPLE VERTEX SHADER FOR CUBE EXAMPLE 
(WEBGL 1.0 AND 2.0)

in vec4 aPosition;
in vec4 aColor;

out vec4 vColor;

void main() 
{    

vColor = aColor;
gl_Position = aPosition;

} 

WebGL 2.0 version

attribute vec4 aPosition;
attribute vec4 aColor;

varying vec4 vColor;

void main() 
{

vColor = aColor;
gl_Position = aPosition;

} 

WebGL 1.0 version
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Here’s the associated fragment shader that we use in our cube example.  While 
this shader is as simple as they come – merely setting the fragment’s color to the 
input color passed in, there’s been a lot of processing to this point. Every 
fragment that’s shaded was generated by the rasterizer, which is a built-in, non-
programmable (i.e., you don’t write a shader to control its operation).  What’s 
magical about this process is that if the colors across the geometric primitive (for 
multi-vertex primitives: lines and triangles) is not the same, the rasterizer will 
interpolate those colors across the primitive, passing each iterated value into our 
color variable.

The precision for floats must be specified. All WebGL implementations must 
support medium precision.

SIMPLE FRAGMENT SHADER FOR CUBE EXAMPLE 
(WEBGL 1.0 AND 2.0)

precision mediump float;

in vec4 vColor;

out vec4 fColor;

void main()

{

fColor = vColor;

}

precision mediump float;

varying vec4 vColor;

void main()

{

gl_FragColor = vColor;

}

WebGL 1.0 version WebGL 2.0 version



Shaders need to be compiled before they can be used in your program. As 
compared to C programs, the compiler and linker are implemented within WebGL 
, and accessible through function calls from within your program. The diagram 
illustrates the steps required to compile and link each type of shader into your 
shader program. A program must contain a vertex shader (which replaces the 
fixed-function vertex processing), a fragment shader (which replaces the 
fragment coloring stages).

Just a with regular programs, a syntax error from the compilation stage, or a 
missing symbol from the linker stage could prevent the successful generation of 
an executable program. There are routines for verifying the results of the 
compilation and link stages of the compilation process, but are not shown here. 
Instead, we’ve provided a routine that makes this process much simpler, as 
demonstrated on the next slide.
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GETTING YOUR SHADERS INTO WEBGL

• Shaders need to be compiled and linked to form an 
executable shader program.

• WebGL provides the compiler and linker.

• A WebGL program must contain vertex and fragment 
shaders.

Create
Shader
Create
Shader

Load Shader 
Source

Load Shader 
Source

Compile 
Shader
Compile 
Shader

Create 
Program
Create 

Program

Attach Shader 
to Program

Attach Shader 
to Program

Link ProgramLink Program

gl.createProgram()

gl.shaderSource()

gl.compileShader()

gl.createShader()

gl.attachShader()

gl.linkProgram()

Use ProgramUse Program gl.useProgram()



To simplify our lives, we created a routine that simplifies loading, compiling, and 
linking shaders: InitShaders().  It implements the shader compilation and linking 
process shown on the previous slide. It also does full error checking, and will 
terminate your program if there’s an error at some stage in the process 
(production applications might choose a less terminal solution to the problem, but 
it’s useful in the classroom).

InitShaders() accepts two parameters, each a filename to be loaded as source for 
the vertex and fragment shader stages, respectively.
The value returned from InitShaders() will be a valid GLSL program id that you 
can pass into glUseProgram().
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A SIMPLER WAY

• We’ve created a function for this course to make it easier to load your shaders
– available at course website

initShaders( vShdr, fShdr );

• initShaders() takes two element ids

– vShdr is the element id attribute for the vertex shader

– fShdr is the element id attribute for the fragment shader

• initShaders() fails if shaders don’t compile, or program doesn’t link
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OpenGL shaders, depending on which stage their associated with, process 
different types of data.  Some data for a shader changes for each shader 
invocation.  For example, each time a vertex shader executes, it’s presented with 
new data for a single vertex; likewise for fragment, and the other shader stages in 
the pipeline.  The number of executions of a particular shader rely on how much 
data was associated with the draw call that started the pipeline – if you call 
glDrawArrays() specifying 100 vertices, your vertex shader will be called 100 
times, each time with a different vertex.

Other data that a shader may use in processing may be constant across a draw 
call, or even all the drawing calls for a frame.  GLSL calls those uniform varialbes, 
since their value is uniform across the execution of all shaders for a single draw 
call.

Each of the shader’s input data variables (ins and uniforms) needs to be 
connected to a data source in the application.  We’ve already seen 
glGetAttribLocation() for retrieving information for connecting vertex data in a 
VBO to shader variable.  You will also use the same process for uniform 
variables, as we’ll describe shortly.

ASSOCIATING SHADER VARIABLES AND DATA

• Need to associate a shader variables with application data sources
– we specify shader variables as strings in the shader source

– WebGL internally maps those strings to index handles (called locations)

• Need to retrieve a variable’s location, then associate that location with a data source

Variable 
Qualifier

Location Function Data Association Function Application Data Storage

in
attribute

gl.getAttribLocation() gl.vertexAttribPointer()
WebGL buffer

(gl.createBuffer())

uniform gl.getUniformLocation()
gi.uniform*fv()

gl.uniformMatrix*fv()

JavaScript Array
Typed Array

(i.e., use flatten())



This completes the rotating cube example.

Other interactive elements such as menus, sliders  and text boxes are only 
slightly more complex to add since they return extra information to the listener. 
We can obtain position information from a mouse click in a similar manner.
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RENDER FUNCTION

function render()
{

gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );

if (animate) theta[axis] += 2.0;

gl.uniform3fv( thetaLoc, theta );

gl.drawArrays( gl.TRIANGLES, 0, numVertices );

requestAnimationFrame( render );
}



49

WEBGL CUBE (PART 3)
TRANSFORMATIONS
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By using 4×4 matrices, OpenGL can represent all affine and perspective  
transformations using one matrix format.  Perspective projections and 
translations require the 4th row and column.  Otherwise, these operations would 
require an vector-addition operation, in addition to the matrix multiplication.

While OpenGL specifies matrices in column-major order, this is often confusing 
for “C” programmers who are used to row-major ordering for two-dimensional 
arrays.  OpenGL provides routines for loading both column- and row-major 
matrices.  However, for standard OpenGL transformations, there are functions 
that automatically generate the matrices for you, so you don’t generally need to 
be concerned about this until you start doing more advanced operations.
For operations other than perspective projection, the fourth row is always (0, 0, 0, 
1) which leaves the w-coordinate unchanged.

3D TRANSFORMATIONS

• A vertex is transformed by 4×4 matrices
– all affine operations are matrix multiplications

• All matrices are stored column-major in WebGL
– this is opposite of what “C” programmers expect

• Matrices are always 
post-multiplied
– product of matrix and 

vector is Mv



Matrix operations are supported directly in GLSL where matrices and vectors are 
atomic types. In the application code, we either carry out the operations in our 
code or use a library such as MV.js or glMatrix. 

TRANSFORMATIONS

• In WebGL and three.js transformations are defined by 4×4 matrices that operate in homogeneous 
coordinates

mat4 * vec4 = vec4

mat4 * mat4 = mat4

– other matrix dimensions (e.g., 3×3, or 4×2) are also supported with types of the form mat3 or mat4x2

• Transformations have three main uses:
– viewing and projection

– changes in coordinate systems

– transforming objects (rotation, translation, scaling)
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Note that human vision and a camera lens have cone-shaped viewing volumes. 
OpenGL (and almost all computer graphics APIs) describe a pyramid-shaped 
viewing volume. Therefore, the computer will “see” differently from the natural 
viewpoints, especially along the edges of viewing volumes. This is particularly 
pronounced for wide-angle “fish-eye” camera lenses.

These transformations were built into the original fixed-function OpenGL, 
Although the functions that used these coordinate systems have been 
deprecated (other than the viewport transformation), most applications prefer to 
build in all these transformations.

CAMERA ANALOGY AND TRANSFORMATIONS

• Projection transformations
– adjust the lens of the camera

• Viewing transformations
– tripod–define position and orientation of the viewing volume in the world

• Modeling transformations
– moving the model

• Viewport transformations
– enlarge or reduce the physical photograph
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The processing required for converting a vertex from 3D or 4D space into a 2D 
window coordinate is done by the transform stage of the graphics pipeline.  The 
operations in that stage are illustrated above.  Each box represent a matrix 
multiplication operation.  In graphics, all our matrices are 4×4 matrices (they’re 
homogenous, hence the reason for homogenous coordinates).

When we want to draw an geometric object, like a chair for instance, we first 
determine all the vertices that we want to associate with the chair.  Next, we 
determine how those vertices should be grouped to form geometric primitives, 
and the order we’re going to send them to the graphics subsystem.  This process 
is called modeling.  Quite often, we’ll model an object in its own little 3D 
coordinate system.  When we want to add that object into the scene we’re 
developing, we need to determine its world coordinates.  We do this by specifying 
a modeling transformation, which tells the system how to move from one 
coordinate system to another. 

Modeling transformations, in combination with viewing transforms, which dictate 
where the viewing frustum is in world coordinates, are the first transformation that 
a vertex goes through.  Next, the projection transform is applied which maps the 
vertex into another space called clip coordinates, which is where clipping occurs.  
After clipping, we divide by the w value of the vertex, which is modified by 
projection.  This division operation is what allows the farther-objects-being-
smaller activity.  The transformed, clipped coordinates are then mapped into the 

TRANSFORMATION PIPELINE

• Transformations take us from one “space” or coordinate system (or frame) to another
– All our transforms are 4×4 matrices 



window.
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WEBGL CUBE (PART 4)
LIGHTING



Lighting is an important technique in computer graphics. Without lighting, objects 
tend to look like they are made from plastic.
The models used in most WebGL applications  divide lighting into three parts: 
material properties, light properties and global lighting parameters.
While we’ll discuss the mathematics of lighting in terms of computing illumination 
in a vertex shader, the almost identical computations can be done in a fragment 
shader to compute the lighting effects per-pixel, which yields much better results.

LIGHTING IN INTERACTIVE APPLICATIONS

• Lighting (illumination) simulates how objects reflect light
– Adds realism to the scene

• Lighting is a very complicated topic
– Global illumination in computer graphics is a very active problem

• We are limited in what we can do rasterization-based applications
– Simple lighting effects are possible, but lack many elements

• shadows

• reflections

• inter-object interactions (e.g., refraction, blending of translucent objects)

– More accurate lighting requires advanced WebGL techniques
• framebuffer objects and multiple passes
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The lighting normal determines how the object reflects light around a vertex. If 
you imagine that there is a small mirror at the vertex, the lighting normal 
describes how the mirror is oriented, and consequently how light is reflected.

LIGHTING COMPONENTS

• The Phong lighting model fits our needs

Term Description Parameters Equation

Ambient Object’s color in low-light • Material • Light color

Diffuse Object’s base color when lit
• Material
• Vertex position
• Vertex normal

• Light color
• Light position

Specular Highlight on objects
• Material
• Vertex position
• Vertex normal

• Light color
• Light position
• Viewer position

Emissive Glow color • Material
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Here we declare numerous variables that we’ll use in computing a color using a 
simple lighting model.  All the uniform values are passed in from the application 
and describe the material and light properties being rendered. We can send these 
values to either the vertex or fragment shader, depending on how we want to do 
lighting computation, either on per vertex basis or a per fragment basis.
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LIGHTING PARAMETERS

struct Light {
vec4 position;

vec4 a; // ambient
vec4 d; // diffuse

vec4 s; // specular
};

uniform Light L;

struct Material {
vec4 a;      // ambient

vec4 d;      // diffuse
vec4 s;      // specular

float shine; // shininess
};

uniform Material M;

in vec4  aPosition; // vertex position

in vec3  aNormal;   // vertex normal

out vec4 vColor;
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LIGHTING MATHEMATICS (VERTEX VERSION)

vec3 nHat = nomralize(aNormal);                         // Normalized vertex normal

vec3 lHat = normalize(L.position.xyz – aPosition.xyz);  // Light vector

vec3 hHat = normalize(vec3(0,0,1) + lHat));             // Half‐angle vector

vec4 I = M.a * L.a // ambient

+ M.d * L.d * max(dot(nHat, lHat), 0.0) // diffuse

+ M.s * L.s * pow(max(dot(nHat, hHat), 0.0), M.shine) // specular

+ M.e; // emissive

vColor = I;
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WEBGL CUBE (PART 5)
TEXTURE



WHY TEXTURE MAPPING

• Although WebGL can process millions of triangles per second on any recent GPU
– Many applications can produce far more triangles

– Faster and more accurate to process geometry on a fragment by fragment basis

• Basic idea: Map a 2D image to a surface
– Gives appearance of great complexity with simple geometry
– Difficult mathematical problem

• Later we’ll see many other uses of texture mapping
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WHY GENERAL TEXTURE MAPPING IS HARD

f(x,y,z) = 0

WHY GENERAL TEXTURE MAPPING IS HARD

f(x,y,z) = 0

s

t

?

The mapping from a 2D texture to an arbitrary  curved 3D object can be done in a 
myriad of ways. Not only is the mathematical problem hard 
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Textures are images that can be thought of as continuous and be one, two, three, 
or four dimensional. By convention, the coordinates of the image are s, t, r and q. 
Thus for the two dimensional image above, a point in the image is given by its (s, 
t) values with (0, 0) in the lower-left corner and (1, 1) in the top-right corner.
A texture map for a two-dimensional geometric object in (x, y, z) world 
coordinates maps a point in (s, t) space to a corresponding point on the screen.

TEXTURE MAPPING

s

t

x

y

z

image

geometry

display

63



When you want to map a texture onto a geometric primitive, you need to provide 
texture coordinates. Valid texture coordinates are between 0 and 1, for each 
texture dimension,  and usually manifest in shaders as vertex attributes.  We’ll 
see how to deal with texture coordinates outside the range [0, 1] in a moment.

MAPPING TEXTURE COORDINATES

• Based on parametric texture coordinates

• coordinates needs to be specified at each vertex

s

t
1, 1

(0, 1)

(0, 0) (1, 0)

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b

Texture Space Object Space
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In the simplest approach, we must perform these four steps.
Textures reside in texture memory. When we assign an image to a texture it is 
copied from processor memory to texture memory where pixels are formatted 
differently. 

Texture coordinates are actually part of the state as are other vertex attributes 
such as color and normals. As with colors, WebGL interpolates texture inside 
geometric objects.

Because textures are discrete and of limited extent, texture mapping is subject to 
aliasing errors that can be controlled through filtering.

Texture memory is a limited resource and having only  a single active texture can 
lead to inefficient code.

APPLYING TEXTURES

• Basic steps to applying a texture
– specify the texture

1. read or generate image

2. assign to texture

3. enable texturing

– assign texture coordinates to vertices
– specify texture parameters by creating a texture object

– wrapping, filtering
4. apply texture in fragment shader with sampler
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TEXTURE COORDINATES

• Texture coordinates are a vertex attribute

• Push onto an array for each vertex

• Set up VBO

function quad(a, b, c, d) {
pointsArray.push(vertices[a]);
colorsArray.push(vertexColors[a]);
texCoordsArray.push(texCoord[0]);

var tBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, tBuffer );
gl.bufferData( gl.ARRAY_BUFFER, flatten(texCoordsArray), gl.STATIC_DRAW );

var texCoordLoc = gl.getAttribLocation( program, "aTexCoord" );
gl.vertexAttribPointer( texCoordLoc, 2, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( texCoordLoc );
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Specifying the texels for a texture is done using the gl.texImage_2D() call.  This 
will transfer the texels in CPU memory to OpenGL, where they will be processed 
and converted into an internal format.

The level parameter is used for defining how WebGL should use this image when 
mapping texels to pixels.  Generally, you’ll set the level to 0, unless you are using 
a texturing technique called mipmapping.

SPECIFYING A TEXTURE IMAGE

• Define a texture image from an array of texels in CPU memory

gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, texSize,

texSize, 0,  gl.RGBA, gl.UNSIGNED_BYTE, image);

• Define a texture image from an image in a standard format  memory specified with the <image> tag in the HTML 
file

var image = document.getElementById("texImage");

gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 

gl.RGB, gl.UNSIGNED_BYTE, image );
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CONFIGURING A TEXTURE

function configureTexture( image ) {

texture = gl.createTexture(); 
gl.bindTexture( gl.TEXTURE_2D, texture ); 

gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, gl.RGB, gl.UNSIGNED_BYTE, image ); 

gl.generateMipmap( gl.TEXTURE_2D ); 
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST_MIPMAP_LINEAR ); 
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST );

gl.uniform1i(gl.getUniformLocation(program, "texture"), 0); 
}
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Just like vertex attributes were associated with data in the application, so too with 
textures. You access a texture defined in your application using a texture sampler 
in your shader.  The type of the sampler needs to match the type of the 
associated texture.  For example, you would use a sampler2D to work with a two-
dimensional texture created with gl.texImage2D( GL_TEXTURE_2D, … );

Within the shader, you use the texture() function to retrieve data values from the 
texture associated with your sampler.  To the texture() function, you pass the 
sampler as well as the texture coordinates where you want to pull the data from.

Note: the overloaded texture() method was added into GLSL version 3.30.  Prior 
to that release, there were special texture functions for each type of texture 
sampler (e.g., there was a texture2D() call for use with the sampler2D).
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APPLYING TEXTURES IN THE FRAGMENT SHADER
WEBGL 1.0

precision mediump float;

varying vec4 vColor;
varying  vec2 vTexCoord;
uniform sampler2D texture;

void main()
{

gl_FragColor = vColor*texture2D( texture, vTexCoord );
}

// Full example on website



In WebGL 2.0, we need to specify a variable for output color.
Note that there is a single texture function.
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APPLYING TEXTURES IN THE FRAGMENT SHADER
WEBGL 2.0

precision mediump float;

in vec4 vColor;
in  vec2 vTexCoord;
uniform sampler2D texture;
out vec4 fColor;

void main()
{

fColor = vColor*texture( texture, vTexCoord );
}

// Full example on website



PRACTICAL WEBGL
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INSTANCED RENDERING

• Suppose we want to display multiple instances of an 
object in a spatial array

• Each with a different color

• But don’t want to send each instance

from the GPU to the CPU

• Note each teapot has 1700+ vertices

• WebGL 2.0: Instanced Rendering

• Send one teapot to GPU

• Execute shaders multiple times

The (in)famous  Utah teapot is defined by 308 vertices which describe 32 cubic 
Bezier patches. Each patch is subdivided into 9 rectangular patches of two 
triangles each. Hence, a single teapot is rendered with 1728 vertices.
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INSTANCED RENDERING OF 27 TEAPOTS

• In JS file

gl.drawArraysInstanced(gl.TRIANGLES, 0, numVertices, numInstances)

• In vertex shader use built-in variable to gl_InstanceID to adjust color and position as 
the shader is executed numInstances times

• Use gl_InstanceID to compute an x, y, and z translations

int x = gl_InstanceID/(9);

int y = (gl_InstanceID‐9*x)/3;

int z = gl_InstanceID‐ 3*(gl_InstanceID/3);

vec4 translation = someFunction(x, y, z);
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INSTANCED TEAPOTS (CONT)

• Shader applies translation to each position

gl_Position = projectionMatrix * modelViewMatrix * (aPosition + translation);

• In color computation, we use x, y and to determine the diffuse color

vec4 diffuse =  Kd*vec4(x, y, z, 1.0);

Here’s the vertex shader

#version 300 es

in vec4 aPosition;
in vec4 aNormal;
out vec4 vColor;

uniform vec4 ambientProduct, diffuseProduct, specularProduct;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform vec4 lightPosition;
uniform float shininess;
uniform mat3 normalMatrix;

void main()
{

int d = 3;
int x = gl_InstanceID/(d*d);
int y = (gl_InstanceID-d*d*x)/d;
int z = gl_InstanceID- 3*(gl_InstanceID/3);
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vec4 translation = vec4(10.0*(float(x)-1.0) - 5.0, 10.0*(float(y)-1.0) - 5.0, 
10.0*(float(z)-1.0) - 5.0, 0.0);

vec3 pos = (modelViewMatrix * aPosition).xyz;
vec3 light = lightPosition.xyz;
vec3 L = normalize( light - pos );

vec3 E = normalize( -pos );
vec3 H = normalize( L + E );

// Transform vertex normal into eye coordinates

vec3 N = normalize( normalMatrix*aNormal.xyz);

// Compute terms in the illumination equation
vec4 ambient = ambientProduct;

float Kd = max( dot(L, N), 0.0 );
//vec4  diffuse = Kd*diffuseProduct;
vec4 diffuse =  Kd*vec4(x, y,z, 1.0);

float Ks = pow( max(dot(N, H), 0.0), shininess );
vec4  specular = Ks * specularProduct;

if( dot(L, N) < 0.0 ) {
specular = vec4(0.0, 0.0, 0.0, 1.0);

}

gl_Position = projectionMatrix * modelViewMatrix * (aPosition + translation);
gl_Position.xyz = 0.5*gl_Position.xyz;
vColor = ambient + diffuse +specular;

vColor.a = 1.0;

}
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SCENE GRAPHS 

• Scene = Geometric Objects + Camera + Light Sources

• Each can be specified as an object 

• Higher level API
– Three.js

– Built on top of WebGL

– Gives access to high level WebGL functionality
– Does not require application to write shaders

Three.js allows users to write their own GLSL shaders. However for most 
applications  especially CAD applications in which the main concern is displaying 
and interacting with geometry, user-written shaders are not necessary.
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CUBE WITH THREE.JS

window.onload = function init() {

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera( 45, 1.0, 0.3, 4.0 );
var renderer = new THREE.WebGLRenderer();

renderer.setClearColor(0xEEEEEE);
renderer.setSize(512, 512);
document.body.appendChild(renderer.domElement);

var cubeGeometry = new THREE.BoxGeometry( 1, 1, 1 );
var cubeMaterial = new THREE.MeshBasicMaterial( { color: 0xff0000, wireframe: true} );
var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);

scene.add(cube);

camera.position.x = 2.0; camera.position.y = 2.0; camera.position.z = ‐2.0;
camera.lookAt(scene.position);

renderer.render(scene, camera);
}

In this example, we start by initializing a new scene, picking a camera 
(perspective) and selecting the WebGL renderer. Three.js forms a standard 
HTML document. We attach the renderer to the document. The example then 
defines the cube by describing its geometry and its material properties and then 
adding it to  the cube object. We then specify the location and orientation of our 
camera. WE finally send both to the renderer. This example uses solid colors for 
the faces of the cube. If we had lighting we would define lights in a similar 
manner and ass them to the renderer.
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ADVANCED APPLICATIONS OF WEBGL 

• 3D Textures (WebGL 2.0)

• Reflection and Bump Maps

• Point Sprites

• Multi- and Off-Screen rendering
– Particle Systems
– Shadow Maps

– Projective Textures

– GPGPU
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3D TEXTURE MAPPING

• WebGL 2.0 supports 3D textures

• A 3D texture is a volume of texels or voxels

• Set up just as with 2D textures

gl.texImage3D(gl.TEXTURE_3D, 0, gl.RGBA, texSize, texSize, texSize, 0,

gl.RGBA, gl.UNSIGNED_BYTE, image3);

• In fragment shader

in vec3 vTexCoord;

uniform sampler3D uTextureMap3D;

fColor = texture(uTextureMap3D, vTexCoord);
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APPLYING 3D TEXTURES

• Using textures to determine colors
– Apply to surface by assigning texture coordinates by (x, y, z) of fragment

– Texel value becomes color of surface

• For volume visualization 
– Display three planes aligned with axes to “cut through” texels
– Used in medical imaging (CT, MRI)

• Can use transparency and render multiple parallel planes

The two examples on the next slide show how 3D textures are used in volume 
imaging.

Another major use is to use a procedural method to generate the 3D texel volume 
so that each voxel simulates a real-world material.
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3D TEXTURE MAPPING FOR VOLUME VIZ

texture3D3.html

The image on the left is of a solid sphere in which the density varies. The density 
values are psuedocolored for display.
The data for the image on the right is from a CT scan of 108 256 x 256 slices.
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CUBE MAPS

• Cube maps use six 2D textures corresponding to sides of a cube

• For example

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_X, …)

• In fragment shader

vec4 texColor = textureCube(texMap, direction);

• We can let the direction be the direction of a reflection from the surface of a surface giving a reflection map 

• We can also determine six texture maps from rendering a scene giving an environment map

Vertex shader

#version 300 es

out vec3 R;
in vec4 aPosition;
in vec3 aNormal;

uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
uniform mat3 uNormalMatrix;

void main()
{

gl_Position = uProjectionMatrix*uModelViewMatrix*aPosition;
vec3 eyePos = (uModelViewMatrix*aPosition).xyz;
vec3 N = normalize(uNormalMatrix*aNormal);
R = reflect(eyePos, N);

}

Fragment shader

#version 300 es
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precision mediump float;

in vec3 R;
out vec4 fColor;

uniform samplerCube uTexMap;

void main()
{

vec4 texColor = texture(uTexMap, R);

fColor = texColor;
}
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REFLECTION MAP

In JS file, for each face, define a texture map. For example:

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_X
,0,gl.RGBA, 1,1,0,gl.RGBA,gl.UNSIGNED_BYTE, red);

In vertex shader, compute refection direction and output it

out vec3 R;
R = reflect(eyePos, N);

In fragment shader, apply texture map as usual

in vec3 R;
fColor = texture(uTexMap, R);

ReflectionMap1.html

Reflecting object is in a box, each side with a solid color. Refection direction 
computed in fragment shader using GLSL reflect function.
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DATA TO MESH

hawaiiImage.html

honoluluMesh.html

honoluluMesh3.html

The three images on this slide show three other ways (remember the bump map 
example) to display the same height data from Honolulu, Hawaii. The image on 
the left was created by using an edge detector (the Sobel operator) on each data 
point. Low slopes are dark, high slopes light. The two images on the right used 
the data to form a 3D mesh. In the top image, we rendering the mesh twice: once 
as solid red triangles and once display only the edges by drawing lines between 
vertices. In the bottom image, we applyied lighting to the mesh rendering and 
colored all the lowest level blue to display the ocean.
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BUMP MAP

The above two images use a single 2D height image of Honolulu, Hawaii i
to create the illusion of a 3D rendering with a moving light source. Using the 
changes in gray level in the neighborhood of each pixel, we can find local shape 
and form a texture map of the local normal (the bump map). We then use the 
texture map in a diffuse lighting model. Each of the images has the light source in 
a different position.  
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BUMP MAP

bumpMap2,html
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GPGPU

• The fragment shader can be used to perform many two-dimensional calculations on a grid
– General Purpose Graphics Processing Unit computing

• Basic idea 
– Render a single rectangle (two triangles)  

– Treat each fragment as a pixel whose color is determined by a calculation in the fragment shader

– gl_FragCoord gives location of pixel
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GPGPU EXAMPLES

• Mandelbrot Set: 
– Each point in image is determined by an iterative calculation using complex numbers

– Fragment color determined by convergence of result

• Image processing 

• Each fragment has its own 2D coordinates 
– no loops are needed in shader
– Muliple fragments  are processed in parallel on most GPUs
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MANDELBROT SET

Based on iterating the complex equation

zk+1 = zk
2 +c 

for each c being the coordinates of each  fragment

z can 
converge hence c is in set
diverege hence c is not in set
or we can’t tell after many iterations

Color fragment based on what happens

Concentrate on regions where we can’t tell

Example: mandelbrot2.html
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GPGPU MANDELBROT SET

The Mandelbrot set is based on iterating on the equation zk=1 = zk
2 + c where z 

and c are complex numbers. We do the iteration for c equal to each pixel’s 
location. We color each pixel depending on whether is converges or not. The 
interesting parts are when the equation neither converges or diverges after a 
large number if iterations. We can adjust the area to look at regions at different 
resolution, each time we zoom in showing more complexity. The image on the 
right covers a small area of the image on the left.

Shaders for complex arithmetic are very simple using the GLSL code, allowing 
the iteration to be carried out totally in the fragment shader.
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OFF-SCREEN RENDERING

• We can render to a buffer other than the frame buffer
– Buffer contents can then be used as a texture for a normal rendering to the frame buffer

– Known as Render-to-Texture

• Examples:
– Shadow Maps (shadowMap.html)
– Projective Textures (projectiveTexture.html)
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SHADOW MAP

• Shadow is result of projecting object viewed from light 
source

• Compute and store as texture

• View shadow from viewers perspective during normal 
rendering
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PROJECTIVE TEXTURE

• Like projecting a color slide onto an object.

• Need modelview matrix and position for a viewer at the 
light source to render texture map correctly

• Use textureProj() in fragment shader
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POINT CLOUDS AND POINT SPRITES

• Suppose we have a set of data  points in 3D

• Rather than building a geometric object such as a mesh we can render each as a point

• With WebGL each point can be rendered as any other primitive

– Render each point with a pixel rectangle (gl_PointSize)

– Address each fragment in rectangle (gl_PointCoord)

– Shade each fragment 
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POINT SPRITE PARTICLE SYSTEM

• CPU/GPU updates location of each point

• Each point is rendered as a square of fragments

• Each fragment in square is shaded as if it were on a 
sphere using normal and lighting
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FINAL THOUGHTS
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OTHER TOPICS IN GRAPHICS

• Additional deferred techniques
– draw the frame, then use that rendering as a texture to make a new frame

• deferred lighting

• post-processing 

• GPU programming and compute
– GPUs are massively powerful computers (even in mobile phones)

– Solve generic problems on the GPU
• particularly useful for data-parallel computation

• Augmented and Virtual Reality
– WebXR brings XR support to Web Browsers
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EVOLUTION OF GRAPHICS APIS

• APIs like OpenGL, WebGL, and Direct3D11 are considered immediate-mode graphics APIs
– Information is delivered to the API through function calls
– Graphics processing occurs when you make a function call (e.g., gl.drawArrays)

– Lots of error checking before any drawing can occur

• Move to more modern approach
– entire data for a scene is submitted at once

– no runtime error checking
• configure a special validation mode

• Caused creation of new APIs

• Influencing Web APIs as well - WebGPU

API Creator Environment

Direct3D12 Microsoft Windows

Metal Apple
iOS, macOS, 
tvOS

Vulkan
The Khronos
Group

Windows, 
Linux, Android

96



WebGL 2.0 is a very fully-featured API, capable of addressing many application 
domains.  There are some features from desktop APIs like OpenGL that currently 
exposed in WebGL, even on platforms that could support them.  Many of those 
features manifest as additional shading stages.  If you’re curious, geometry 
shading, where procedural generation of additional geometry based on a single 
geometric primitive (e.g., a line or triangle) isn’t well supported on mobile 
graphics architectures, which is a primary market of WebGL.  Further, tessellation 
shading, which is the generation of lines or a mesh from an algebraically-defined 
surface (e.g., like a Bezier curve, Catmull-Clark surface) also isn’t available in the 
WebGL pipeline.  Again, this is likely a result of the GPU architectures that 
OpenGL ES (and thus WebGL) can support.
Finally, compute shaders aren’t universally exposed in WebGL either currently, 
not so much for lack of support in GPUs, but more for security of web browsers, 
which is the environment where WebGL executes.  However, compute shaders 
are definitely under discussion and could be coming to a browser near you in the 
very near future.
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THE FUTURE OF WEBGL

• Recall that WebGL is based on OpenGL ES
– most new development of features going into Vulkan

• Compute shader facility
– currently being prototyped as a WebGL extension

– other extensions to WebGL expose additional features
• more pixel and texture formats

• HDR

• Addition shader stages
– unlikely to see tessellation and geometry shaders in

WebGL anytime soon
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RESOURCES



All the above books except Angel and Shreiner, Interactive Computer Graphics 
(Addison-Wesley) and Learning three.js, are in the Addison-Wesley Professional 
series of OpenGL books. 
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BOOKS

• Modern OpenGL
– WebGL Insights

– The OpenGL Programming Guide, 9th Edition
– Interactive Computer Graphics: A Top-down Approach using WebGL, 8th Edition

– WebGL Programming Guide: Interactive 3D Graphics Programming with WebGL

– WebGL Beginner’s Guide

• Three.js
– Learning Three.js, 2nd Edition

• Other resources
– OpenGL ES 2.0 Programming Guide

– OpenGL ES 3.0 Programming Guide
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ONLINE RESOURCES

This course’s notes InteractiveComputerGraphics.com

The OpenGL Website www.opengl.org

The Khronos Website www.khronos.org

Ed’s course examples www.cs.unm.edu/~angel/WebGL/7E

Experiments www.chromeexperiments.com/webgl

Links galore bit.ly/webglhelp

Three.js’s site threejs.org

Eric Haines’s Udacity 
course

bit.ly/intro3D



Many example programs, a JS matrix-vector package and the InitShader() 
function are under the Book Support tab at www.cs.unm.edu/~angel
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THANKS!

• Feel free to drop us any questions:

• angel@cs.unm.edu

• shreiner@siggraph.org

• Course notes and programs available at

• InteractiveComputerGraphics.com

• www.cs.unm.edu/~angel


